Amit Paranjape’s Blog

The Greatest Technological Achievement Of The 20th Century – The Apollo 11 Mission To Moon

Posted in Science & Technology by Amit Paranjape on July 19, 2009
 ‘Its one small step for man…one giant leap for mankind’ – yes, most of us have heard this line. It is quite possibly one of the most famous quotations of the 20th century. But how many of us really understand the epic foundation, the mammoth base, the stupendous structure that enabled this ‘small step’? And I am not just talking about the physical structure of the incredible Saturn V rocket!

The Apollo Program, which reached its zenith with that memorable line from Neil Armstrong, was in my humble view – the greatest technological achievement of the 20th Century. July 20th, 1969 was not only NASA’s finest hour; it was mankind’s finest hour. If technology & technology driven progress are the cornerstones of the past century, no other success represents it better!

Setting Foot On Moon

Today, we celebrate the 40th anniversary of this historic event. It’s an opportunity to pause and admire. It’s an opportunity to wonder and think back in awe. It’s an opportunity to understand. It’s an opportunity to learn. As a student of science and technology, the Apollo Program fascinates me no end, even today. In this blog, I will make an attempt to recollect the incredible facts and stories about this program. But numbers don’t tell the whole story. The sheer circumstances under which these successes were achieved are mind boggling and simple factoids won’t do justice.

Readers, please note: If you are interested in getting a quick preview of some of these fascinating numbers and factoids, take a look at my post from July 16 (40th anniversary of the launch): 10 Fascinating Factoids About The Apollo Program’s Saturn V Rocket

How it all began

Its one thing to set impossible goals, and its another to actually achieve those…and achieve them, they did… With a year to spare!

It all started with that John F. Kennedy speech to the Congress in the 1961 (And followed by the famous ‘We choose to go the moon…’ speech at Rice University). Or maybe the moon race started a little before that – following the launch of Sputnik by the Soviet Union. Post World War II, America and Soviet Union entered into a massive space race, armed with some important spoils from Nazi Germany. The German rocket program was quite extensive, and it had successfully built and deployed the V1 and V2 rockets. Much bigger plans were on the anvil, but the course of the war prevented them from being materialized. Apparently, in 1945 the Germans had devised designs for a rocket (specifically, a ballistic missile) that could reach the American shores.

The Russians captured the German rocket base at Peenemünde, but the lead scientist Wernher von Braun escaped and surrendered to the Americans, along with a small team of scientists.

Allow me a slight digression here, but I cannot help but draw an interesting parallel to the Indian mythological epic, ‘The Mahabharat’. Before the Kaurav – Pandav war, Arjun and Duryodhan approached Krishna for his support. Turns out that Duryodhan (Kauravs) got Krishna’s entire army and infrastructure; and Arjun (Pandavs) got lord Krishna himself; unarmed.

Coming back to Von Braun, the reason why I am mentioning him here is because he went onto to become the lead for the massive Saturn series rockets program.

But Saturn V and Apollo 11 didn’t happen overnight. There were many other stepping stones, which started with America’s first space launch in 1958 of the satellite Explorer I…., first manned launch in 1961  (John Sheppard was the first to make a sub-orbital flight, and John Glenn (who later on went to become a senator, and also the oldest man to travel in space in the space shuttle in 1998, at the age of 77) did the first full orbit around the earth.…and through a series of Gemini series missions. The Apollo program was conceived back in 1961 towards achieving Kennedy’s goal.

Before we take a look at the Apollo Program, let’s briefly understand the overall components of the Saturn V rocket and the Apollo spacecraft.

Saturn V rocket and the Apollo spacecraft

Saturn V Rocket Components

The Saturn V was a multi-stage (3 stage) rocket with the Apollo Spacecraft payload on the top. Some of the earlier Apollo missions were based on the Saturn 1B rocket, which essentially was a smaller version of the Saturn V. The Saturn V was designed to deliver a the spacecraft payload consisting of: Command Module (Columbia), Service Module and Lunar Module (Eagle) – into the lunar orbit.

The 1st stage stood 138 ft tall and was powered by Kerosene and Liquid Oxygen. The 1st stage reached a height of nearly 45 miles, and achieved a speed of nearly 2 km/sec. The 2nd stage stood 81.7 ft tall and was powered by Liquid Hydrogen and Liquid Oxygen. The 2nd stage reached a height of 110 miles, and achieved a speed of nearly 7 km/sec. The 3rd stage stood 58.7 ft tall and was powered by Liquid Hydrogen and Liquid Oxygen. The 3rd stage got the Apollo Spacecraft into an earth orbit. It was also fired again (to reach 11 km/sec – the escape velocity of earth) to push the Spacecraft out of the earth orbit, into a course towards the moon.

The Command Module, ‘Columbia’ orbited was the ‘mother ship’ of the Apollo Spacecraft. Armstrong and Aldrin transferred over to the Lunar Module ‘Eagle’, while Collins stayed in the lunar orbit. The Service Module was attached to the Command Module and contained support systems and propulsion systems for the return journey to the earth. The Lunar Module, ‘Eagle’ descended towards the moon, with rocket thrusters to slowdown and control the approach.

From the tragedy of Apollo 1 to great success of Apollo 10

The Apollo Program started with a disaster. Apollo 1 capsule caught fire during a test on the launch pad and the three astronauts burned to death. Amongst them was Edward White, the first American to do a Space-Walk. This was the first loss of life suffered by the American Space Program, and was a huge blow. It resulted in a lot of rethinking and introspection by NASA.

There were some major revisions in the plan, and the program went on. The earlier Apollo missions completed a series of tests of the different components and the sub-systems. These included the earlier generation Saturn 1 and Saturn 1B rockets, the Saturn V rocket, the Command Module, the Service Module and the Lunar Module (NOTE – I will not go into details of the complete design…readers who are interested can…). The initial series of launches (Apollo 2 – Apollo 6) were unmanned missions.

Apollo 7 lifted off on Oct 11, 1967 and was a confidence building mission. The 3 man crew went into a low earth orbit and tested various systems of the lunar and the command modules.  Testing of the maneuverability of the Lunar Module in the weightlessness of space was very important.

Apollo 8 was the first flight to head to the vicinity of the moon. It was also the first manned flight of the awe-inspiring Saturn V rocket.  The crew of Apollo 8 included command module pilot Jim Lowell, who was later the commander of the ill-fated Apollo 13. Apollo 8 provided the first views of the other side of the moon.

Apollo 9 carried out first lunar orbit and manned testing of the lunar module Apollo 10 carried out the lunar module descent to within 50,000 feet from the surface of the moon. The stage was now set for Apollo 11.

Apollo 11 – ‘The Eagle Has Landed’

Apollo 11 blasted off in space on July 16, 1969. After 4 days, on July 20, 1969, the Lunar Module started its descent onto the surface of the moon.


 

‘Houston, Tranquility Base here. The Eagle Has Landed’. Land successfully, it did! But it was over 4 km off-course. It was running low on fuel and had only 30 sec of spare fuel left to land.

It took the Armstrong and Aldrin a few hours to check and secure all the systems, until Armstrong could set foot on the moon.

The Apollo 11 astronauts setup various instruments and the American flag on the moon. Various lunar rock samples were collected. Future Apollo missions also carried a motorized rover that could take the astronauts over a longer distance to explore the moon surface.

Eagle - Heading Back From The Moon

During liftoff, the landing stage of the Eagle (with its empty fuel tank) was left on the moon, to save weight. The ascent engine powered Eagle back into the lunar orbit and docked it back again with the command module. Armstrong and Aldrin got back into the Command Module, and then jettisoned the lunar module. The Command-Service Module (CSM) then fired its return engine to set them back on a trajectory towards earth.

On July 24th, the Command Module Capsule splashed down in the Pacific mission to mark the completion of this most historic mission.

Why was it such a great achievement?

As I write this, I look at the progress that has happened in the space program since the last Apollo nearly 40 years ago. Just this past week, NASA was struggling to launch the Space Shuttle in midst of some weather problems. Agreed that there were major budget cuts in the American Space Program post Apollo, but still the achievements of the past 4 decades leave a lot to desire, in comparison to the Gold Standards set in the 1960s. Note – I am not taking anything away from the 100 + Space Shuttle missions and International Space Station.

Can you imagine running the entire Apollo 11 flight computer on something less powerful than your cell phone’s chip? Well, ran they did! Today, the gadgets all around us are equipped with microprocessors – from a music system, to a washing machine. From a camera, to a car. But remember, Intel’s first microprocessor, the 4 bit 4004 didn’t make its debut until 1971! So just think of this – such a complex space mission was executed with electronic components that was less powerful than your microwave oven!

Think of the gargantuan Saturn V rocket that moved from concept to design to manufacture to successful prototyping and execution, in under a decade! The first American and Soviet rockets that went into space in the late 1950s were tiny (barely 50 ft, with a capacity to put a 50 kg satellite in earth orbit) and extremely unsophisticated compared to the Saturn V (standing 363 ft tall, could put payloads in excess of 100 Tons in earth orbit) that first flew in 1968.

Rockets Comparison - From V2 to Saturn V

Rockets Comparison - From V2 to Saturn V

Realize that a rocket is a very a complex system and contains hundreds of sub-systems and millions of parts. There’s propulsion, guidance, communication, telemetry, navigation – just to name a few major ones. And there are backups…backups for almost every system. And backups for backups!

Let’s take a few examples. Telemetry deals with streaming hundreds of data parameters from the spacecraft back to Mission Control in Houston, 200,000 miles away. This data had to be interpreted, analyzed (through a combination of automated and manual processes) and acted on, around the clock.

Propulsion system of the rocket engines provides the necessary thrust. The Saturn V’s 1st stage had 5 F1 Engines generating the kind of power, most probably not generated in any machine since then! I will not bore you with many numbers, but here’s a simple comparison. The main engines of Saturn V generated enough power, equivalent to about 150 Giga Watts. That is about the entire installed electric power generation capacity of India! Or about 2.5 times the power generated in Texas, USA. Or about 80 times the power generated by one of the largest hydro-electric plants in North America – The Hoover Dam. Just the fuel pumps of these engines consumed power equivalent to that needed by the City of Pune!

To get a sense of the complexity of internals of the command module and the lunar modules, I would just recommend watching that Hollywood classic – Apollo 13 (Which incidentally happens to be my most favorite movie). A typical automobile has a few thousand parts. The Apollo command, service and lunar modules had over a million.

Navigation and Guidance are extremely challenging tasks for any space mission. Extremely small errors can take the rocket on a wrong trajectory which could mean completely missing the target (The Moon) or come crashing down and burn up in the Earth’s atmosphere on the return.

I will go back to the Apollo 13 mission for a minute. Sometimes failures highlight the successes of a project more than anything else. Imagine doing near real-time analysis, diagnosis, generating remote workarounds and implementing repair 200,000 miles in space! But the Apollo Program was designed to handle these scenarios. Coming back to Apollo 13, one NASA personnel put it quite nicely – ‘It (Apollo 13) was NASA’s most successful failure!’

And I haven’t discussed the manufacturing and assembly challenges at all. Building a 3000 Ton machine is no easy job. Building one that will fly at speeds of 2 km/sec is another. Note – the final stage of Saturn V, which powered the Apollo Spacecraft towards the moon, did eventually approach the earth escape velocity of 11 km /sec.

Massive fuel tanks had to be designed that could withstand extreme pressures and temperatures, and fabricated in pieces and then assembled. Just to highlight one example here, consider the scale of the fuel consumption of the Saturn V main engines. To generate the kind of power mentioned earlier, you need lot of fuel! The first stage of Saturn V consumed Kerosene (as the propellant) and Liquid Oxygen. It gobbled up around 15 Tons of Kerosene / sec! Just think of the complex high-power pumps and piping needed to feed this kind of fuel into the engines, to generate that massive power!

The Lunar Module was the most complex of the machines and was assembled in a special plant. Specialized Heat Shields that can withstand temperatures over 3000 F on reentry had to be tested and built.

Lastly, I would like to highlight the program management aspects of this effort. We routinely see major engineering projects dragging for years. Here was a project of this startling magnitude, moving from conception to execution stage in less than 10 years!

There were so many historic firsts in this project…in the areas of size, scale, complexity and ingenuity. But ultimately these facts don’t tell the whole story. I guess the ultimate greatness of Apollo 11 was how it captivated an entire generation!

Interesting Links & Resources

1. NASA homepage

2. Footage of launch of Apollo 11 with a highspeed camera

3. Footage of launch at normal speed

References

1. The official NASA website: www.nasa.gov

2. Wikipedia Pages for Apollo Program, Apollo 11, Saturn V Rocket

3. HBO Documentary ‘From Earth To The Moon’, presented by Tom Hanks. (IMDB Link)

4. Ron Howard’s ‘Apollo 13’ (IMDB Link)

5. Johnson Space Center, Houston - Space Center Houston

6. Marshall Space Flight Center – Alabama

7. Kennedy Space Center – Florida

About these ads

7 Responses

Subscribe to comments with RSS.

  1. Neeran said, on July 20, 2009 at 9:37 am

    I had the good fortune of having a formal, sit-down, 3-course meal right under… the Saturn V rocket! It was a corporate event organized at the Kennedy Space Center, and it was awesome to be seated with the massive hulking rocket suspended right above us, with an astronaut as guest speaker.

    Incidentally, Neil Armstrong’s famous words, with which you started this blog post, don’t make sense because of a missing article :-) The way he says it, “man” and “mankind” have the same meaning. What he meant of course was, “It’s one small step for *a* man, one giant leap for mankind”!

  2. Amit Paranjape said, on July 20, 2009 at 9:42 am

    Neeran, That should have been great. I too have had a chance to look and admire the Saturn V rocket shell kept at Space Center (Johnson Space Center), Houston. I have visited that center quite a few times. The other NASA facilities I enjoyed visiting are the Marshall Center (Alabama) and Kennedy Space Center (Florida).
    You are right about Neil Armstrong’s exact statement – his voice recording has been analyzed multiple times over the years to figure out exactly what he said! Not to mention, the numerous interviews he must have clarified it.

  3. Abhay Shete said, on July 20, 2009 at 6:56 pm

    Great article!! The complexities mentioned are indeed mind numbing!! I am sure this event must have had a great impact on the minds of young kids of that time who would grow up to become engineers/scientists and create new frontiers in technology.

  4. Sanjeev said, on July 20, 2009 at 6:59 pm

    Amit: The Apollo program and its achievements never cease to amaze me. The astronauts and the entire Apollo team beat such astronomically high odds in making all of mankind proud. Riding on a fireball, taking aim at (and making it successfully to and back from) celestial bodies moving in unimaginably complex trajectories. I remember reading that telemetry used at that time required the astronauts to complement its accuracy periodically by noting positions of well-known stars. There were many backup systems on the spacecraft, but there were countless possible scenarios where the result could’ve been vastly different; Apollo 13 gave an inkling of these possibilities …even during Apollo 11 like you mentioned, Neil landed the lunar module with only 30 sec of reserve fuel left. Ofcourse the astronauts had near-perfect skills but also superhuman resolve and nerves of steel (and an equally competent ground control team)!

    Thanks for your wonderful article.

  5. [...] The Greatest Technological Achievement Of The 20th Century – The Apollo 11 Mission To Moon [...]

  6. Quora said, on December 9, 2011 at 10:58 pm

    What is the greatest technological achievement of the 20th Century?…

    The 20th century saw remarkable progress in science and technology. Great developments include – the first powered airplane, transistor, laser, … the list can include many items. I would vote for the Apollo Program as one of the greatest. Here are my…

  7. [...] many items. I would vote for the Apollo Program as one of the greatest. Here are my thoughts: https://aparanjape.wordpress.com/… • Cannot add comment if you are logged out.   Amit Paranjape The Apollo Mission [...]


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 79 other followers

%d bloggers like this: